Probing Single-Molecule Neuron-Ligand Pathfinding

R01 NS40678 and EB00463; a Bioengineering Research Partnership

between the University of Delaware and the University of Utah

Professor and Director, Surface Analysis Facility

Ligand-receptor bond-rupture forces, biomaterial surface chemistry, scanning probe microscopy, surface analysis.

* A damaged central nervous system has only a limited ability for repair and regeneration due to factors that are not yet well understood.

Patrick Tresco (PI at Utah)
Neuroscience-Oriented Bioengineer

Cellular-based molecular delivery systems, neurodegenerative, neuroendocrine-deficiency disorders, CNS regeneration.

Vladimir Hlady (co-PI at Utah) Biophysics-Oriented Bioengineer

Professor and
Chair, Department of
Bioengineering; coDirector, Center for
Biopolymers at
Interfaces

Interfacial biophysics, protein adsorption, induced molecular recognition, polymer surfaces

Introduction & Motivation

* "Biomaterial bridges" can in principle be used to reconstruct neuronal growth pathways.

* How do biomaterial bridges affect neuronal growth on well characterized materials and surfaces?

Rat DRG Neurites on Fibronectin-Covered Surfaces

- We functionalize AFM tips with ligands to directly probe neurons.
- We pattern and functionalize materials to influence neuron growth.
- We watch neurons from below while using AFM to probe the forces from above.
- Movie collected over 2.25 hours with 40× objective, playing ~870 times faster than realtime process.

Note formation of new junctions between different neurite branches